A Machine Learning Perspective for Ontology Mining

Claudia d'Amato

Department of Computer Science University of Bari

ESSENCE 2017  $\diamond$  San Serolo, Venice - October 7, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

# • Ontologies ⇒ basic element for realizing the semantic interoperability

• on the Web and in other contexts



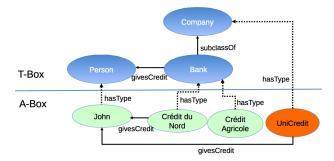
#### Examples of existing real ontologies

- Schema.org
- Gene Ontology
- Foundational Model of Anatomy ontology
- Financial Industry Business Ontology (by OMG Finance Domain Task Force)
- GoodRelations
- . . .

## Reasoning on Description Logics Ontologies

#### **OWL** adopted $\Rightarrow$ **Description** Logics theoretical foundation

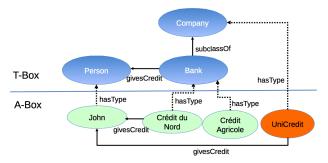
Ontologies are equipped with deductive reasoning capabilities  $\Rightarrow$  allowing to make explicit, knowledge that is implicit within them



## Reasoning on Description Logics Ontologies

#### **OWL adopted** $\Rightarrow$ **Description Logics** theoretical foundation

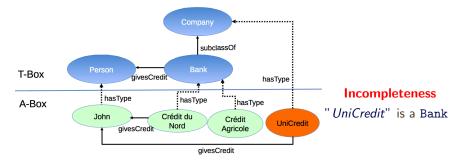
Ontologies are equipped with deductive reasoning capabilities  $\Rightarrow$  allowing to make explicit, knowledge that is implicit within them



#### Deduction: "Crédit du Nord", "Crédit Agricole" are also Company

Introduction & Motivation

## Reasoning on Description Logics Ontologies



ESSENCE 2017 4 / 47

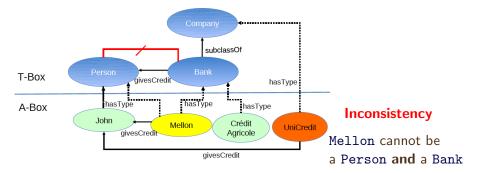
3

イロト イポト イヨト イヨト

Sac

Introduction & Motivation

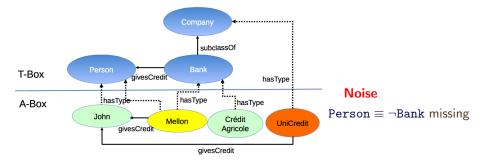
## Reasoning on Description Logics Ontologies



3

Introduction & Motivation

### Reasoning on Description Logics Ontologies

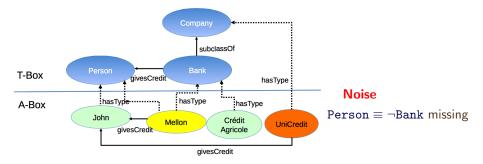


ESSENCE 2017 6 / 47

3

## Reasoning on Description Logics Ontologies

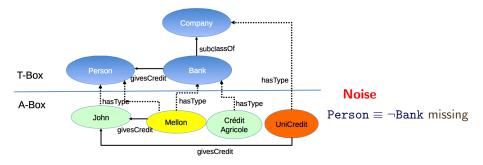
**Question:** would it be possible to discover new/additional knowledge by exploiting *the evidence coming from the assertional data*?



(4 回 ト 4 ヨ ト 4 ヨ

## Reasoning on Description Logics Ontologies

**Question:** would it be possible to discover new/additional knowledge by exploiting *the evidence coming from the assertional data*?



**Idea:** exploiting **Machine Learning methods** for **Ontology Mining** related tasks [d'Amato et al. @SWJ'10]

C. d'Amato (UniBa)

Machine Learning for Ontology Mining

ESSENCE 2017 6 / 47

#### Definition (Ontology Mining)

All activities that allow for

#### discovering hidden knowledge from

ontological knowledge bases

3

13 N

< 4 → <

#### Definition (Ontology Mining)

All activities that allow for

#### discovering hidden knowledge from

ontological knowledge bases

#### **Special Focus on:**

- (similarity-based) inductive learning methods
  - use specific examples to reach general conclusions
  - are known to be very efficient and fault-tolerant

#### **Ontology Mining Tasks**

- Instance Retrieval (Instance Level)
- Ontology Enrichment (Schema Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)

<ロト <部ト <注入 <注下 = 正

590

#### from an inductive perspective

Focus on: similarity-based methods

#### **Ontology Mining Tasks**

- Instance Retrieval (Instance Level)
- Ontology Enrichment (Schema Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)

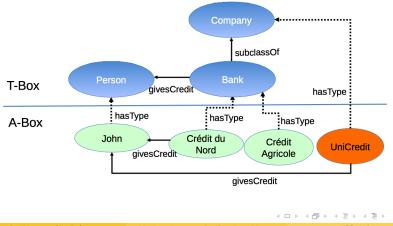
#### from an inductive perspective

<ロト <部ト <注入 <注下 = 正

## Introducing Instance Retrieval I

Instance Retrieval  $\rightarrow$  Finding the extension of a query concept

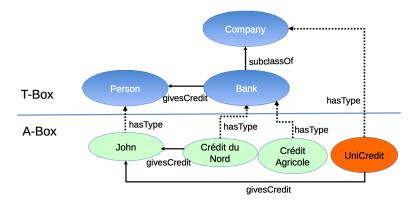
• Instance Retrieval (Bank) = {"Crédit du Nord", "Crédit Agricole"}



ESSENCE 2017 10 / 47

## Introducing Instance Retrieval I

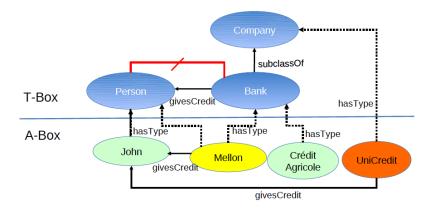
Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies



3

## Introducing Instance Retrieval II

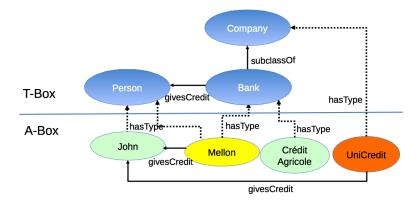
Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies



3

## Introducing Instance Retrieval III

Problem: Instance Retrieval in incomplete/inconsistent/noisy ontologies



3

## Issues & Solutions I

#### **IDEA**

Casting the problem as a Machine Learning classification problem

assess the class membership of individuals in a Description Logic (DL) KB w.r.t. the query concept

#### State of art classification methods cannot be straightforwardly applied

- generally applied to *feature vector* representation
  - $\rightarrow$  upgrade DL expressive representations
- implicit Closed World Assumption made in ML
  - $\rightarrow$  cope with the Open World Assumption made in DLs
- classes considered as *disjoint* 
  - $\rightarrow$  cannot assume disjointness of all concepts

## Issues & Solutions II

#### **Adopted Solutions:**

- Defined new semantic similarity measures for DL representations
  - to cope with the high expressive power of DLs
  - to deal with the semantics of the compared objects (concepts, individuals, ontologies)
  - to convey the underlying semantics of KB
- Formalized a set of criteria that a similarity function has to satisfy in order to be defined *semantic* [d'Amato et al. @ EKAW 2008]
- Definition of the classification problem taking into account the OWA
- Multi-class classification problem decomposed into a set a smaller classification problems

ESSENCE 2017 15 / 47

- 4 伺 ト 4 ヨ ト 4 ヨ ト

#### Definition (Problem Definition)

Given:

- ullet a populated ontological knowledge base  $\mathcal{K}=\langle\mathcal{T},\mathcal{A}
  angle$
- a query concept Q
- a training set with  $\{+1, -1, 0\}$  as target values

Learn a classification function f such that:  $\forall a \in Ind(A)$  :

- f(a) = +1 if a is instance of Q
- f(a) = -1 if a is instance of  $\neg Q$
- f(a) = 0 otherwise (unknown classification because of OWA)

#### **Dual Problem**

- given an individual  $a \in Ind(\mathcal{A})$ , tell concepts  $C_1, \ldots, C_k$  in  $\mathcal{K}$  it belongs to
- the multi-class classification problem is *decomposed* into a set of *ternary classification problems* (one per target concept)

イロト 不得下 イヨト イヨト

## **Developed methods**

#### **Pioneering the Problem**

• relational K-NN for DL KBs [d'Amato et al. ESWC'08]

#### Improving the efficiency

 kernel functions for kernel methods to be applied to DLs KBs [Fanizzi, d'Amato et al. @ ISMIS'06, JWS 2012; Bloehdorn and Sure @ ISWC'07]

#### Scaling on large datasets

• Statistical Relational Learning methods for large scale and data sparseness [Huang et al. @ ILP'10, Minervini et a. @ ICMLA'15]

- 4 伺 ト 4 ヨ ト 4 ヨ ト

## Lesson Learnt from experiments I

Experiments performed on ontologies publicly available

Results compared with a standard deductive reasoner

Need for new metrics  $\rightarrow$  **Defined** to distinguish induced assertions from mistakes

|            |    |    | Reasoner |    |
|------------|----|----|----------|----|
|            |    | +1 | 0        | -1 |
| INDUCTIVE  | +1 | М  | 1        | С  |
| Classifier | 0  | 0  | Μ        | 0  |
|            | -1 | С  | 1        | М  |

M Match Rate C Commission Error Rate / Induction Rate

**O Ommission Error Rate** 

### Lesson Learnt from experiments II

- Commission error almost zero on average
- Omission error rate very low and only in some cases
  - Not null for ontologies in which disjoint axioms are missing
- Induction Rate not zero
  - new knowledge (not logically derivable) induced ⇒ can be used for semi-automatizing the ontology population task

|           | match          | commission    | omission      | induction     |
|-----------|----------------|---------------|---------------|---------------|
| SWM       | 97.5 ± 3.2     | 0.0 ± 0.0     | 2.2 ± 3.1     | $0.3 \pm 1.2$ |
| LUBM      | 99.5 ± 0.7     | $0.0 \pm 0.0$ | $0.5 \pm 0.7$ | $0.0 \pm 0.0$ |
| NTN       | $97.5 \pm 1.9$ | 0.6 ± 0.7     | $1.3 \pm 1.4$ | $0.6 \pm 1.7$ |
| FINANCIAL | $99.7\pm0.2$   | $0.0 \pm 0.0$ | $0.0\pm0.0$   | $0.2 \pm 0.2$ |

#### **Ontology Mining Tasks**

- Instance Retrieval (Instance Level)
- Ontology Enrichment (Schema Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)

#### from an inductive perspective

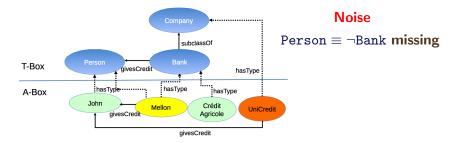
<ロト <部ト <注入 <注下 = 正

# Ontology Enrichment as a Disjointness Axioms Discovery Problem

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

# Disjointness axioms often missing within ontologies Problems:

• introduction of noise



#### • counterintuitive inferences

Observation: extensions of disjoint concepts do not overlap

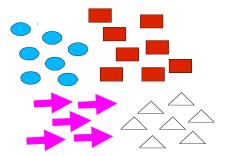
**Question:** would it be possible to *automatically capture* disjointness axioms by analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

## Basics on Clustering Methods

**Clustering methods:** unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

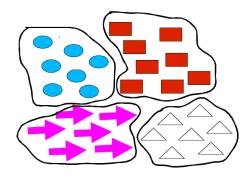
- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



## Basics on Clustering Methods

**Clustering methods:** unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

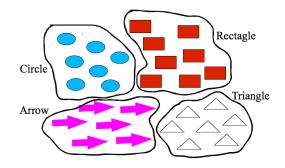
- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



## Basics on Clustering Methods

**Clustering methods:** unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low



Observation: extensions of disjoint concepts do not overlap

**Question:** would it be possible to *automatically capture* them by analyzing the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for the purpose

Definition (Problem Definition)

Given

- an ontological knowledge base  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
- a set of individuals  $I \subseteq Ind(\mathcal{A})$

Find

- *n* pairwise disjoint clusters {**C**<sub>1</sub>,...,**C**<sub>n</sub>}
- for each i = 1,..., n, a concept description D<sub>i</sub> that describes
   C<sub>i</sub>, such that:

• 
$$\forall a \in \mathbf{C}_i : \mathcal{K} \models D_i(a)$$

- $\forall b \in \mathbf{C}_j, j \neq i$ :  $\mathcal{K} \models \neg D_i(b)$ .
- Hence  $\forall D_i, D_j, i \neq j$ :  $\mathcal{K} \models D_j \sqsubseteq \neg D_i$ .

C. d'Amato (UniBa)

# Clustering Individuals of An Ontology: Developed Methods

#### Purely Logic-based

- KLUSTER [Kietz & Morik, 94]
- CSKA [Fanizzi et al., 04]
  - Produce a *flat output*
  - *Suffer from noise* in the data

#### Similarity-based $\Rightarrow$ noise tolerant

- Evolutionary Clustering Algorithm around Medoids [Fanizzi et al. @ IJSWIS 2008]
  - automatically assess the best number of clusters
- k-Medoid (hierarchical and fuzzy) clustering algorithm [Fanizzi et al. @ ESWC'08, Fundam. Inform.'10]
  - number of clusters required

イロト イポト イヨト イヨト

ESSENCE 2017 28 / 47

# Developed Methods for:

#### Supervised Concept Learning

- Separate-and-conquer approach
  - YinYang [lannone et al. @ Appl. Intell. J. 2007]
  - DL-FOIL [Fanizzi et al. @ ILP 2008]
  - DL-Learner [Lehmann et al. @ MLJ 2010, SWJ 2011]
- Divide-and-conquer approach
  - TermiTIS [Fanizzi et al. @ ECML 2010, Rizzo et al. @ ESWC 2015]
- can be exploited for learning intentional cluster descriptions do not tackle the problem of learning disjointness axioms

#### Learning Disjointness Axioms

- Statistical-based approach
  - NAR exploiting negative association rules [Fleischhacker et al. @ OTM'11]
  - PCC exploiting Pearson's correlation coeff. [Völker at al.@JWS 2015]
- do not exploit any background knowledge

ESSENCE 2017 29 / 47

## Terminological Cluster Tree

Defined a method for eliciting disjointness axioms [Rizzo et.al.@ESWC'17]

- solving a clustering problem via learning Terminological Cluster Trees
- providing a concept description for each cluster

#### Definition (Terminological cluster tree (TCT))

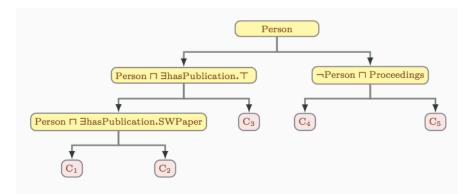
A binary logical tree where

- a node stands for a cluster of individuals C
- each inner node contains a description D (over the signature of  $\mathcal{K}$ )
- each departing edge corresponds to positive (left) and negative (right) examples of *D*

3

## Example of TCT

Given  $I \subseteq Ind(A)$ , an example of TCT describing individuals in the Semantic Web research community



3

# Collecting Disjointness Axioms

Given a TCT  $\mathbf{T}$ :

Step I:

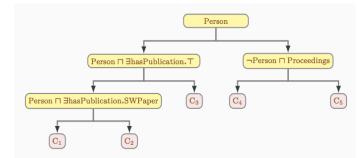
- Traverse the **T** to collect the concept descriptions describing the clusters at the leaves
- A set of concepts **CS** is obtained

Step II:

- A set of candidate axioms A is generated from CS:
  - an axiom  $D \sqsubseteq \neg E$   $(D, E \in \mathbf{CS})$  is generated if
    - $D \not\equiv E$  (or  $D \not\sqsubseteq E$  or viceversa)
    - $E \sqsubseteq \neg D$  has not been generated

**Ontology Enrichment** 

### Collecting Disjointness Axioms: Example



$$\label{eq:cs} \begin{split} \textbf{CS} = \{ & \mathsf{Person}, \, \mathsf{Person} \sqcap \exists \mathsf{hasPublication}.\top, \, \neg(\mathsf{Person} \sqcap \exists \mathsf{hasPublication}.\top), \\ & \mathsf{Person} \exists \mathsf{hasPublication}.\mathsf{SWPaper}, \, \neg\mathsf{Proceedings}, \\ & \neg\mathsf{Person} \sqcap \mathsf{Proceedings}, \, \cdots \} \end{split}$$

Axiom1: Person  $\sqcap \exists$  hasPublication.SWPaper  $\sqsubseteq \neg(\neg$ Proceedings) Axiom2: ···

ESSENCE 2017 33 / 47

イロト 不得下 イヨト イヨト

## Inducing a TCT

Given the set of individuals I and  $\top$  concept

Divide-and-conquere approach adopted

- $\bullet$  Base Case: test the  $\operatorname{STOPCONDITION}$ 
  - $\bullet\,$  the cohesion of the cluster I exceeds a threshold  $\nu\,$ 
    - $\bullet\,$  distance between  $\textit{medoids}\,$  below a threshold  $\nu$
- Recursive Step (STOPCONDITION does not hold):
  - a set **S** of refinements of the current (parent) description C generated
  - the BESTCONCEPT  $E^* \in S$  is selected and installed as *current node* 
    - the one showing the best cluster separation ⇔ with max distance between the medoids of its positive P and negative N individuals
  - I is SPLIT in:
    - $I_{left} \subseteq I \leftrightarrow$  individuals with the smallest distance wrt the *medoid* of *P*
    - $I_{\textit{right}} \subseteq \mathbf{I} \leftrightarrow \text{individuals}$  with the smallest distance wrt the *medoid* of N

#### Note: Number of clusters not required - obtained from data distribution

### Lesson Learnt from experiments I

#### Experiments performed on ontologies publicly available

- Goal I: Re-discover a target axiom (existing in  $\mathcal{K}$ )
  - Setting:
    - A copy of each ontology is created removing a target axiom
    - Threshold  $\nu = 0.9, 0.8, 0.7$
    - $\bullet~$  Metrics # discovered axioms and # cases of inconsistency
  - Results:
    - target axioms rediscovered for almost all cases
    - additional disjointness axioms discovered in a significant number
    - limited number of inconsistencies found

| Ontology   | TCT 0.9 |       | TCT   | Г 0.8 | TCT 0.7 |       |  |
|------------|---------|-------|-------|-------|---------|-------|--|
| Ontology   | #inc.   | #ax's | #inc. | #ax's | #inc.   | #ax's |  |
| BioPax     | 2       | 53    | 2     | 53    | 3       | 52    |  |
| NTN        | 10      | 70    | 9     | 73    | 10      | 75    |  |
| FINANCIAL  | 0       | 125   | 0     | 126   | 0       | 127   |  |
| GeoSkills  | 2       | 345   | 1     | 347   | 4       | 347   |  |
| Monetary   | 0       | 432   | 0     | 432   | 0       | 433   |  |
| DBPedia3.9 | 45      | 45    | 44    | 44    | 43      | 43    |  |

イロト イポト イヨト イヨト

### Lesson Learnt from experiments II

#### Goal II:

- Re-discover randomly selected target axioms added according to the **Strong Disjointness Assumption** [Schlobach et al. @ ESWC 2005]
  - two sibling concepts in a subsumption hierarchy considered as disjoint
- comparative analysis with <u>statistical-based</u> methods [Völker at al. @ JWS 2015, Fleischhacker et al. @ OTM'11]
  - PCC based on *Pearson's correlation coefficient*
  - NAR exploiting negative association rules
- Setting:
  - A copy of each ontology created removing 20%, 50%, 70% of the disjointness axioms
    - $\bullet\,$  The copy used to induce TCT  $\nu=$  0.9, 0.8, 0.7 # Run: 10 times
  - Metrics: rate of rediscovered target axioms, #cases of inconsistency, # addional discovered axioms

イロト 不得下 イヨト イヨト

### Lesson Learnt from experiments III

#### • Results:

- almost all axioms rediscovered
  - Rate decreases when larger fractions of axioms removed, as expected
- *TCT outperforms PCC and NAR* wrt *additionally discovered axioms* whilst introducing limited inconsistency
  - TCT allows to express complex disjointness axioms
  - PCC and NAR tackle only disjointness between concept names

Exploiting the  $\mathcal{K}$  as well as the data distribution improves disjointness axioms discovery

#### **Ontology Mining Tasks**

- Instance Retrieval (Instance Level)
- Ontology Enrichment (Schema Level)
- Concept Drift and Novelty Detection (Ontology Dynamic)

#### from an inductive perspective

(中) (종) (종) (종) (종) (종)

500

### Concept Drift and Novelty Detection

- Ontologies evolve over the time  $\Rightarrow$  *New assertions* added.
- Concept Drift
  - change of a concept towards a more general/specific one w.r.t. the evidence provided by new annotated individuals
    - $\bullet\,$  almost all Worker work for more than 10 hours per days  $\Rightarrow\, \tt HardWorker$

### Novelty Detection

- isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB
  - subset of Worker *employed* in a company  $\Rightarrow$  Employee
  - subset of Worker *working for* several companies  $\Rightarrow$  Free-lance

### Concept Drift and Novelty Detection

- Ontologies evolve over the time  $\Rightarrow$  *New assertions* added.
- Concept Drift
  - change of a concept towards a more general/specific one w.r.t. the evidence provided by new annotated individuals

#### Novelty Detection

• isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB

**Idea:** *automatically capturing* them by analyzing the data configuration/distribution

**Research Direction** 

Exploiting (Conceptual) clustering methods for the purpose

C. d'Amato (UniBa)

Machine Learning for Ontology Mining

ESSENCE 2017

39 / 47

### Lesson Learnt from Experiments

#### **Developed Methods**

- Evolutionary Clustering around Medoids [Fanizzi et al. @ IJSWIS 2008]
  - automatically assess the best number of clusters
- k-Medoid (hierarchical and fuzzy) clustering algorithm [Fanizzi et al. @ ESWC'08, Fundam. Inform.'10]
  - number of clusters required

Clustering algorithms applied on ontologies publicly available

• *evaluated by the use of standard validity clustering indexes* (e.g. Generalized Dunns index, cohesion index, Silhouette index)

Necessity of a domain expert/gold standard particularly for validating the concept novelty/drift

ESSENCE 2017 40 / 47

イロト イポト イヨト イヨト 二日

### Conclusions

#### **Machine Learning methods**

- could be usefully exploited for ontology mining
- suitable in case of incoherent/noisy KBs
- can be seen as an additional layer on top of deductive reasoning for realizing *new/additional forms of approximated reasoning capabilities*

#### Future directions:

- Semi-Supervised Learning methods particularly appealing for LOD
- Special focus on scalability issues

- 4 伺 ト 4 ヨ ト 4 ヨ ト

# That's all!

### Thank you



Nicola Fanizzi Giuseppe Rizzo Floriana Esposito

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

1

900

### **Refinement Operators**

#### Downward refinement operators specializing a concept C

- $\rho_1 \quad C' = C \sqcap (\neg) A;$
- $\rho_2 \quad C' = C \sqcap (\neg)(\exists) R.\top;$
- $\rho_3 \quad C' = C \sqcap (\neg)(\forall) R.\top;$
- $\rho_4 \exists R.C'_i \in \rho(\exists R.C_i) \land C'_i \in \rho(C_i);$
- $\rho_5 \ \forall R.C'_i \in \rho(\forall R.C_i) \land C'_i \in \rho(C_i).$

3

### Distance measure between individuals

Distance Function (adapted from [d'Amato et al.@ESWC2008]):  $d_n^{\mathcal{C}}: \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \to [0, 1]$ 

$$d_n^{\mathcal{C}}(a,b) = \left[\sum_{i=1}^m w_i \left[1 - \pi_i(a)\pi_i(b)\right]^n\right]^{1/n}$$

Context: a set of atomic concepts  $C = \{B_1, B_2, \dots, B_m\}$ 

**Projection Function:** 

$$orall a \in \operatorname{Ind}(\mathcal{A})(\mathcal{A})$$
  $\pi_i(a) = egin{cases} 1 & ext{if } \mathcal{K} \models B_i(a) \ 0 & ext{if } \mathcal{K} \models \neg B_i(a) \ 0.5 & ext{otherwise} \end{cases}$ 

イロト 不得下 イヨト イヨト 二日

## 2nd Experiment - Outcomes

| Ontology   | f   | TCT 0.9 |       | TCT 0.8 |       | TCT 0.7 |       | PCC   |         | NAR   |       |
|------------|-----|---------|-------|---------|-------|---------|-------|-------|---------|-------|-------|
| Ontology   |     | #inc.   | #ax's | #inc.   | #ax's | #inc.   | #ax's | #inc. | . #ax's | #inc. | #ax's |
| BIOPAX     | 20% | 235     | 3859  | 357     | 4235  | 365     | 4256  |       |         |       |       |
|            | 50% | 125     | 3576  | 357     | 4176  | 432     | 4115  | 257   | 280     | 352   | 2990  |
|            | 70% | 125     | 3432  | 235     | 3875  | 417     | 4154  |       |         |       |       |
| NTN        | 20% | 312     | 3128  | 343     | 3126  | 354     | 3124  |       |         |       |       |
|            | 50% | 234     | 3023  | 234     | 3034  | 235     | 3034  | 32    | 957     | 376   | 3766  |
|            | 70% | 156     | 2987  | 176     | 2679  | 123     | 2675  |       |         |       |       |
| Financial  | 20% | 76      | 165   | 87      | 325   | 96      | 276   |       |         |       |       |
|            | 50% | 37      | 143   | 56      | 307   | 53      | 259   | 124   | 1112    | 542   | 5366  |
|            | 70% | 33      | 143   | 43      | 276   | 40      | 221   |       |         |       |       |
|            | 20% | 234     | 14289 | 357     | 14297 | 432     | 14345 |       |         |       |       |
| GeoSkills  | 50% | 231     | 14123 | 356     | 14154 | 417     | 14256 | 456   | 13384   | 456   | 13299 |
|            | 70% | 234     | 14122 | 358     | 14154 | 377     | 14187 |       |         |       |       |
| Monetary   | 20% | 535     | 13456 | 573     | 13453 | 623     | 13460 |       |         |       |       |
|            | 50% | 315     | 13236 | 432     | 13236 | 532     | 13236 | 543   | 13384   | 423   | 13456 |
|            | 70% | 247     | 13127 | 231     | 13127 | 312     | 13127 |       |         |       |       |
| DBPedia3.9 | 20% | 1345    | 29730 | 1432    | 30143 | 1432    | 30567 |       |         |       |       |
|            | 50% | 1346    | 29730 | 1431    | 30143 | 1433    | 30567 | 1243  | 30470   | 1243  | 30365 |
|            | 70% | 1343    | 19730 | 1432    | 30143 | 1432    | 30567 |       |         |       |       |

996 1

イロト イヨト イヨト イヨト

### **Experiment II - Outcomes**

| Ontology   | f   | TCT – standard mode |                 |                 | Т               | TCT – early stopping |                 |  |  |
|------------|-----|---------------------|-----------------|-----------------|-----------------|----------------------|-----------------|--|--|
|            |     | TCT 0.9             | TCT 0.8         | TCT 0.7         | TCT 0.9         | TCT 0.8              | TCT 0.7         |  |  |
|            | 20% | $0.90 \pm 0.12$     | $0.76 \pm 0.13$ | $0.74 \pm 0.13$ | $0.80 \pm 0.23$ | $0.65 \pm 0.23$      | $0.70 \pm 0.13$ |  |  |
| BioPax     | 50% | $0.85 \pm 0.13$     | $0.74 \pm 0.13$ | $0.74 \pm 0.13$ | $0.63 \pm 0.23$ | $0.63 \pm 0.23$      | $0.63 \pm 0.23$ |  |  |
|            | 70% | $0.85\pm0.13$       | $0.74\pm0.12$   | $0.74\pm0.14$   | $0.69\pm0.13$   | $0.67\pm0.13$        | $0.66\pm0.14$   |  |  |
|            | 20% | $0.99 \pm 0.08$     | $0.95 \pm 0.06$ | $0.95 \pm 0.08$ | $0.70 \pm 0.15$ | $0.67 \pm 0.15$      | $0.67 \pm 0.14$ |  |  |
| NTN        | 50% | $0.97 \pm 0.03$     | $0.93\pm0.10$   | $0.93\pm0.01$   | $0.55 \pm 0.13$ | $0.54 \pm 0.13$      | $0.54 \pm 0.15$ |  |  |
|            | 70% | $0.90\pm0.10$       | $0.89\pm0.11$   | $0.89\pm0.10$   | $0.55 \pm 0.13$ | $0.55 \pm 0.13$      | $0.55 \pm 0.13$ |  |  |
|            | 20% | $0.99 \pm 0.08$     | $0.99 \pm 0.08$ | $0.99 \pm 0.08$ | $0.60\pm0.10$   | $0.59 \pm 0.11$      | $0.59 \pm 0.11$ |  |  |
| FINANCIAL  | 50% | $0.97 \pm 0.03$     | $0.97 \pm 0.03$ | $0.97 \pm 0.03$ | $0.56 \pm 0.10$ | $0.56 \pm 0.10$      | $0.56 \pm 0.10$ |  |  |
|            | 70% | $0.95\pm0.05$       | $0.95\pm0.05$   | $0.95\pm0.05$   | $0.56\pm0.10$   | $0.56\pm0.10$        | $0.56 \pm 0.10$ |  |  |
|            | 20% | $0.99 \pm 0.08$     | $0.99\pm0.08$   | $0.99 \pm 0.08$ | $0.70 \pm 0.15$ | $0.69\pm0.11$        | $0.69 \pm 0.11$ |  |  |
| GeoSkills  | 50% | $0.92 \pm 0.10$     | $1.00\pm0.00$   | $1.00\pm0.00$   | $0.65 \pm 0.23$ | $0.65 \pm 0.23$      | $0.65 \pm 0.23$ |  |  |
|            | 70% | $0.92\pm0.10$       | $0.92\pm0.10$   | $0.92\pm0.10$   | $0.65 \pm 0.23$ | $0.63 \pm 0.22$      | $0.62 \pm 0.23$ |  |  |
|            | 20% | $0.99 \pm 0.08$     | $1.00\pm0.00$   | $1.00\pm0.00$   | $0.65 \pm 0.23$ | $0.63 \pm 0.20$      | $0.62 \pm 0.23$ |  |  |
| Monetary   | 50% | $0.94 \pm 0.13$     | $1.00\pm0.00$   | $1.00\pm0.00$   | $0.63 \pm 0.12$ | $0.66 \pm 0.15$      | $0.65 \pm 0.11$ |  |  |
|            | 70% | $0.94\pm0.13$       | $0.91\pm0.14$   | $0.91\pm0.13$   | $0.62 \pm 0.12$ | $0.60\pm0.13$        | $0.60 \pm 0.12$ |  |  |
| DBPedia3.9 | 20% | $1.00\pm0.00$       | $1.00\pm0.00$   | $1.00\pm0.00$   | $0.70 \pm 0.12$ | $0.68 \pm 0.13$      | $0.67 \pm 0.12$ |  |  |
|            | 50% | $1.00\pm0.00$       | $1.00\pm0.00$   | $1.00\pm0.00$   | $0.65 \pm 0.23$ | $0.68\pm0.13$        | $0.64 \pm 0.12$ |  |  |
|            | 70% | $0.96\pm0.08$       | $0.90\pm0.08$   | $0.90\pm0.08$   | $0.65\pm0.22$   | $0.68\pm0.13$        | $0.64\pm0.12$   |  |  |

E 999

イロト イヨト イヨト イヨト

### Example of axioms

#### Successfully discovered axioms

- ExternalReferenceUtilityClass □ ∃TAXONREF.⊤ disjoint with xref
- Activity

disjoint with Person □ ∃nationality.United\_states

 Person □ hasSex.Male (≡ Man) disjoint with SupernaturalBeing □ God (≡ God)